P0036
DTC P0036 Oxygen Sensor Heater Control Circuit (Bank 1 Sensor 2)CIRCUIT DESCRIPTION
DTC Detection Condition:
To obtain a high purification rate for the CO, HC and NOx components of the exhaust gas, a three-way catalytic converter is used, but for the most efficient use of the three-way catalytic converter, the air-fuel ratio must be precisely controlled so that it is always close to the stoichiometric air-fuel ratio. The oxygen sensor has the characteristic whereby its output voltage changes suddenly in the vicinity of the stoichiometric air-fuel ratio. This is used to detect the oxygen concentration in the exhaust gas and provide feedback to the computer for control of the air-fuel ratio. When the air-fuel ratio becomes LEAN, the oxygen concentration in the exhaust increases and the oxygen sensor informs the ECM of the LEAN condition (small electromotive force: < 0.45 V).
When the air-fuel ratio is RICHER than the stoichiometric air-fuel ratio the oxygen concentration in the exhaust gas is reduced and the oxygen sensor informs the ECM of the RICH condition (large electromotive force: > 0.45 V). The ECM judges by the electromotive force from the oxygen sensor whether the air-fuel ratio is RICH or LEAN and controls the injection time accordingly. However, if malfunction of the oxygen sensor causes output of abnormal electromotive force, the ECM is unable to perform accurate air-fuel ratio control. The main heated oxygen sensors include a heater which heats the zirconia element. The heater is controlled by the ECM. When the intake air volume is low (the temperature of the exhaust gas is low) current flows to the heater to heat the sensor for accurate oxygen concentration detection.
HINT:
- Bank 1 refers to the bank that includes cylinder No.1.
- Sensor 2 refers to the sensor farther away from the engine body.
MONITOR DESCRIPTION
Monitor Strategy:
Typical Enabling Conditions:
Typical Malfunction Thresholds:
Component Operating Range:
Monitor Result (Mode 06):
The sensing portion of the heated oxygen sensor has a zirconia element which is used to detect oxygen concentration in the exhaust. If the zirconia element is at the proper temperature and difference of the oxygen concentration between the inside and outside surface of sensor is large, the zirconia element will generate voltage signals. In order to increase the oxygen concentration detecting capacity in the zirconia element, the ECM supplements the heat from the exhaust with heat from a heating element inside the sensor. When current in the sensor is out of the standard operating range, the ECM interprets this as a fault in the heated oxygen sensor and sets a DTC.
Example:
The ECM will set a high current DTC if the current in the sensor is more than 2.35 A when the heater is OFF. Similarly, the ECM will set a low current DTC if the current is less than 0.2 A when the heater is ON.
Wiring Diagram:
Step 1 - 2:
INSPECTION PROCEDURE
HINT: Read freeze frame data using OBD II scan tool or hand-held tester. Because freeze frame records the engine conditions when the malfunction is detected. When troubleshooting, it is useful for determining whether the vehicle was running or stopped, the engine was warmed up or not, the air-fuel ratio was lean or rich, etc. at the time of the malfunction.