FREE REPAIR MANUALS & LABOR GUIDES 1982-2013 Vehicles
Courtesy of Operation CHARM: Car repair manuals for everyone.

Part 2







Design

Outside temperature sensor




The outside temperature sensor detects the temperature in the surrounding air. The signal is used by the engine control module (ECM) as a substitute value in the event of a fault in certain components or functions and to control certain diagnostic functions.
The sensor is a negative temperature coefficient (NTC) type which is supplied with power from the control module (signal). The resistance in the sensor changes with the outside temperature. This alters the signal to the engine control module (ECM). The lower the temperature the higher the voltage (high resistance). A high temperature results in low voltage (low resistance).
The outside temperature sensor is positioned in the left door mirror.
The outside temperature sensor can be diagnosed by the engine control module (ECM) and the sensor value can be read off.

Engine coolant level sensor




The function of the engine coolant level sensor is to alert the driver if the engine coolant level in the expansion tank is too low.
The sensor is a magnetic reed switch, which is enclosed in a pipe on the bottom of the expansion tank. Around the pipe, on the inside of the expansion tank is a float. This float contains a magnet. When the engine coolant level is above minimum, the float is too high in the tank to affect the switch. However if the engine coolant level falls below the minimum level, the magnetic field acts on the switch.
The sensor is supplied with voltage (signal) from the engine control module (ECM) and grounded in the body. When the engine coolant level in the expansion tank is over a certain level the circuit closes, which produces a low signal. When the engine coolant level is below a certain level the circuit is opened by the engine coolant level sensor, which produces a high signal. When the engine control module (ECM) detects a high signal the information about low engine coolant level is transmitted via the Controller area network (CAN) to the driver information module (DIM), which warns the driver.

Note! There are no functions controlled by the engine which are directly connected to the low coolant level warning lamp. The Engine Control Module (ECM) only transfers the signal which is used by the Driver Information Module (DIM).

The engine control module (ECM) cannot diagnose the engine coolant level sensor.

Manifold absolute pressure (MAP) sensor, intake




The manifold absolute pressure (MAP) sensor detects quick pressure changes in the intake manifold after the throttle. The signal from the sensor is used by the engine control module (ECM) to supplement the mass air flow (MAF) sensor when calculating injection period.
Manifold absolute pressure (MAP) sensor, intake is located on the lower part of the intake manifold at the electronic throttle module.
The semi-conductor sensor is grounded in the control module and is supplied with power from the control module.
The resistance in the intake manifold moves the silicone membrane in the sensor, giving a signal of 0.5 - 4.5 V to the control module. Low pressure results in low voltage, high pressure gives high voltage.
The pressure sensor can be diagnosed by the engine control module (ECM) and the sensor signal can be read off.

Fuel pressure sensor / fuel temperature sensor




Overview
The fuel pressure, fuel temperature sensor is combined and consists of both the fuel pressure sensor and the fuel temperature sensor. The sensor detects the fuel pressure (the absolute pressure) and the temperature of the fuel in the fuel rail.
The fuel pressure sensor is located on the fuel rail's end.
The fuel pressure-/fuel temperature sensor can be diagnosed by the engine control module (ECM) and its signals (pressure and temperature) can be read off.
Fuel pressure sensor
The pressure sensor is a Piezo resistive type resistor, the resistance of which changes with the pressure. Depending on the pressure in the fuel rail, an analog signal of 0 - 5 V is transmitted to the engine control module (ECM). Low pressure results in low voltage, high pressure gives high voltage.
The engine control module (ECM) then uses this signal to adjust the pressure in the fuel rail using the fuel pump control module. See also: Function, B6324S5 Function
The pressure sensor is supplied with 5 V and grounded in the engine control module (ECM). The pressure sensor transmits a signal indicating the fuel pressure to the engine control module (ECM) on a separate cable.

Note! The absolute pressure is displayed when using parameter read outs to read off the fuel pressure. If there is no pressure at the fuel rail, the atmospheric pressure will be displayed.

Hint: The relative pressure (absolute pressure minus atmospheric pressure) is displayed when reading off the fuel pressure via a manometer connected to the fuel rail.

Fuel temperature sensor
The temperature sensor is an NTC sensor. The sensor is supplied with voltage (signal) from and grounded in the engine control module (ECM).
The resistance in the sensor changes according to the temperature of the fuel. This provides the engine control module (ECM) with a signal of between 0 - 5 V. Low temperature results in high voltage (high resistance). High temperature results in low voltage (low resistance).
The engine control module (ECM) uses the signal to calculate the volume of the fuel.

Oil level sensor




The function of the oil level sensor is to provide the engine control module (ECM) with information regarding the level of engine oil in the oil sump.
The sensor consists of:
- a terminal with three pins
- integrated electronics
- 2 capacitive gauge elements
- a PTC resistor.
The oil level sensor is supplied with 5 V by the engine control module (ECM). The oil level sensor generates a pulse width modulated (PWM) signal for the engine control module (ECM).
The oil level sensor can be diagnosed by the engine control module (ECM).
The pulse-width modulated (PWM) signal from the oil level sensor can be read using parameter readout.

Main relay (system relay)




The function of the main relay (system relay) is to supply certain components with voltage.
The relay is mechanical and has a closing and opening function. In the rest position the circuit in the relay is open.
The main relay terminals (#30 and #86) are supplied with voltage by the battery. When the ignition key has been turned and the engine control module (ECM) is powered, the terminal (#85) on the main relay is grounded by the engine control module (ECM).
When the terminal (#85) is grounded, the relay is activated and a number of components are powered via the relay terminal (#87).
The main relay is in the integrated relay/fuse box in the engine compartment and is diagnosed by the engine control module (ECM).

Injectors




The function of the injectors is to spray fuel into the cylinders in the correct spray patterns. This happens sequentially.
The injectors are located along the intake pipe.
The engine control module (ECM) controls the injectors by grounding the valves in pulses.
The injectors can be diagnosed by the engine control module (ECM) and can be activated.

Ignition coils




The ignition coils supply the spark plugs with high voltage to produce sparks. The engine control module (ECM) controls the ignition coils so that sparks are generated at the correct time. The signal reconnects to the engine control module (ECM) so that diagnostics can be carried out.
Each ignition coil has an integrated power stage.
The ignition coils are in the sparkplug wells above each spark plug.
The control module checks the ignition coils' function using one separate diagnostic lead.

Camshaft reset valve (CVVT)




The camshaft reset valve controls the oil flow to the CVVT unit (camshaft pulley).
The valve consists of an electro-magnetic valve with a spring-loaded piston. There are slits in the piston which channel the engine lubricating oil to the CVVT unit by moving the piston in the reset valve. The continuous variable valve timing (CVVT) unit turns the camshaft (the camshaft timing changes). The direction in which the camshaft turns depends on the chamber in the CVVT unit which is supplied with oil (pressure). See also: Function, B6324S5 Function
An oil filter is mounted at the intake channel for the valves to prevent oil contaminants from affecting the function of the reset valves.
The system relay supplies the reset valve with voltage via a fuse. The valve is grounded (control stage) internally in the engine control module (ECM). When the valve is grounded using a pulse width modulation (PWM) signal, the oil flow in the valve can be regulated to the different chambers in the continuous variable valve timing (CVVT) unit at variable rates. This allows the angle position to be changed precisely and steplessly.
The engine control module (ECM) can diagnose the camshaft reset valve.
The valve is located on the cylinder head above the camshaft. There is a valve for intake camshaft.
There is no valve for the exhaust camshaft.

Evaporative emission system (EVAP) valve




The evaporative emission system (EVAP) valve is used to open and close the connection between the EVAP canister and the intake manifold. The valve controls the flow of hydro-carbons (fuel vapor) from the EVAP canister to the engine intake manifold using the vacuum in the intake manifold. This ensures that hydro-carbons stored in the EVAP canister are used in the engine combustion process.
The valve is an electromagnetic valve and is powered from the system relay. When the valve needs to be opened, it is grounded internally in the engine control module (ECM). The evaporative emission system (EVAP) valve is closed when in the standby position (open-circuit).
When the control module requests that the EVAP canister should be drained (the hydrocarbons stored in the canister should be released into the engine), the control module deploys the evaporative emission system (EVAP) valve by grounding it. A pulse width modulation (PWM) signal is used to ground the valve and to control the degree to which the valve will open. In this way, the drainage of the EVAP canister is matched to the volumetric efficiency of the EVAP canister, the engine speed (RPM) and the engine load.
The evaporative emission system (EVAP) valve can be diagnosed by the engine control module (ECM) and can be activated.
The EVAP-valve is located by the intake manifold (by the electronic throttle module) on the front of the engine.

Leak diagnostic unit




The function of the leak diagnostic unit is to pressurize the fuel tank system during leak diagnostics and to open the fuel tank system to the surrounding air during evaporative emissions control.

The leak diagnostic unit consists of a plastic housing with:
1. electrical air pump
2. a valve / solenoid which governs the air flow in the unit
3. a heater element (PTC resistor) which warms up the pump.
The electrical pump, valve and heater element in the unit are supplied with voltage by the system relay. The pump, valve and heater element are grounded (control) in the engine control module (ECM).
During leak diagnostics the pump in the leak diagnostic unit starts. The valve in the unit is operated by the engine control module (ECM) by grounding the different circuits internally in the engine control module (ECM). Operation depends on whether the diagnostic phase is checking for leakage or checking the function of the diagnostic system. The engine control module (ECM) gauges the power consumption of the pump during pressurization. The power consumption corresponds to a certain pressure in the fuel tank system. See also: Leak diagnostics (certain markets only) Leak Diagnostics (Certain Markets Only)
The engine control module (ECM) can diagnose the leak diagnostic unit.
The valve in the leak diagnostic unit can be activated and the power consumption of the pump can be read off.
The leak diagnostic unit is at the upper front edge of the fuel tank.

air conditioning (A/C) compressor.




The air conditioning (A/C) compressor transports refrigerant, which is necessary for air conditioning (A/C) operation. It is an axial piston compressor with variable displacement. I.E. The compressor has adjustable cylinder displacement which is controlled by a check valve (solenoid). The valve, which is underneath the compressor, can be replaced.
The A/C compressor is mounted on the cylinder block and is driven by the engine's crankshaft via the auxiliaries belt.
For further information, see Design and Function, climate control module (CCM).

Air conditioning (A/C) relay




The air conditioning (A/C) relay supplies the A/C compressor with voltage. The relay is controlled by the engine control module (ECM) based on information from different signals:
- the climate control module (CCM) (via the control area network (CAN))
- the engine coolant temperature
- the position of the accelerator pedal (AP)
- the pressure in the system.
The engine control module (ECM) can temporarily disengage the A/C compressor during wide open throttle (WOT) acceleration.
The relay is mechanical. It has a closing / opening function and is supplied with power from the system relay.
In the rest position the circuit in the relay is open.
The system relay supplies the coil and the relay with power. The relay activates when the coil is grounded in the engine control module (ECM), the circuit closes and the A/C compressor is supplied with power via the relay voltage output.
The relay coil is grounded (signal) when the engine control module (ECM) receives a signal via the CAN network from the climate control module (CCM) to activate the relay and start the compressor.

Starter motor relay




The function of the starter motor relay is to supply power to the starter motor. See also: Function, B6324S5 Function
The starter motor relay is in the relay/fusebox in the engine compartment.